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In the first part of this article we study the hysteretic bistable response of Duffing oscillators and show ways
to control the switching between stable branches of this nonlinear response. The control mechanism is either
applied through a pulse that can be in phase or out of phase with the periodic driving force or through a
frequency-modulated driving force. In the second part we show how memory effects in dissipation qualita-
tively and quantitatively alter the dynamics of Duffing oscillators. We show how memory functions corre-
sponding to different dissipative regimes �diffusion, subdiffusion, and superdiffusion� affect the oscillator. In
particular, we obtain universal power laws for the absoption when the driving frequency �→0. For subdiffu-
sive memories the power law exponents ��2, for diffusive memories �=2, and for superdiffusive memories
��2.
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I. INTRODUCTION

Duffing oscillators, along with the van der Pol oscillator,
Lorenz equations, and the logistic map, have been one of the
mostly studied nonlinear dynamical systems �1–3�. A number
of systems are modeled by the Duffing equation, such as
analog circuits �4�, a relativistic electron in a magnetic field
�5�, the current biased Josephson junction �6�, and microelec-
tromechanical systems �MEMS� or nanoelectromechanical
systems �NEMS� �7�. Recently, experimental development of
MEMS and NEMS have spurred new interest in Duffing os-
cillators. The dynamics of the fundamental mode of doubly
clamped mechanical resonators is well approximated by the
Duffing equation. Furthermore, these micromechanical de-
vices exhibit a bistable response quantitatively similar to the
one obtained in Duffing oscillators �8�. Since only a rela-
tively small force is needed for driving these systems into the
nonlinear regime, there is a wide range of applications such
as frequency mixing �9�, synchronization �10�, bistable re-
sponse, and amplification using bifurcation points �11�, that
are accessible to experimental investigation.

Here we will study some aspects of Duffing oscillators
that we think have technological applications for MEMS and
NEMS and basic scientific interest as well. On the techno-
logical side we propose two simple control mechanisms to
switch between the stable branches of the bistable hysteretic
response of ac-driven Duffing oscillators. The first control
mechanism is a force pulse whose center frequency is equal
to the frequency of the ac driving force of the oscillator. The
pulses can be in or out of phase with the ac driving force
depending on which branch of the bistable response the os-
cillator is initially. The second control mechanism is based
on frequency modulation of the ac driving force. On the
more scientific side, we propose to study phenomena related
to non-Markovian dissipation �i.e., dissipation with memory�
using a Duffing oscillator as a probe. In one simple experi-
ment it is possible to detect the presence of memory effects
and quantitatively measure the memory function. In this ex-
periment a spherical Brownian particle is attached to the

middle of a doubly clamped resonator or to the free end of a
carbon nanotube, where the amplitude of the oscillation is
highest. The calculated memory thus obtained would be very
similar to the one of the free Brownian particle, because the
size of this particle is of the order of hundreds of nms while
the width of a NEMS resonator beam is typically of the order
of a few nms. Such experimental measurement of the
memory function could provide a better understanding of
Brownian motion, since a determination of the memory func-
tion will tell us what kind of random motion the free Brown-
ian particle will have: subdiffusive, diffusive, or superdiffu-
sive �12�.

Nonlinear equations with non-Markovian dissipation,
such as the Duffing oscillator equation, is a natural out-
growth of the generalized Langevin equation. In such sys-
tems the memory of non-Markovian dissipative processes
arises from the weak coupling of the oscillator with a ther-
mal heat bath of harmonic oscillators once the heat bath de-
grees of freedom are integrated out �13�. Memory effects will
become more and more relevant as micromechanical devices
become smaller and smaller, since the natural frequency of
these resonators gets larger. Recently, carbon nanotube-based
NEMS �14� were developed whose fundamental mode is in
the GHz region at room temperature and pressure conditions,
a huge development over earlier MEMS that operated in
kHz. In such a high-frequency device there could be memory
effects in the coupling between the oscillating beam and the
air surrounding it in a manner similar to what happens to a
fast moving sphere in a simple fluid �15�. Furthermore, if the
nonlinear oscillator we are modeling is an atomic force mi-
croscope in tapping mode over a biological system, we may
have an adhesion problem and that will become a non-
Markovian dissipative process at high frequencies. Yet an-
other application of NEMS in which memory effects can
become relevant is when an atomic force microscope micro-
cantilever is submerged in a liquid environment, such as in
the recent experiment of Kim and Kihm �16�.

Harmonic excitations of viscoelastic nonlinear bars with
equations similar to our Duffing equations with non-
Markovian dissipation have been studied numerically by
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Suire et al. �17�. They did not study though the bistable
response and their model includes a cubic nonlinear term in
the dissipation, which is of higher order in the perturbative
approximation and can, for weakly nonlinear systems, be
safely neglected.

It is important to note that mathematically an oscillator
with Markovian dissipation is qualitatively different from an
oscillator with non-Markovian dissipation. In the first case
we have an ordinary differential equation �ODE� system,
while in the latter one we have an integrodifferential equa-
tion, which in general can be rewritten in the form of an
ODE system of infinite dimensionality. We said “in general”
because in special cases, such as when the memory function
is a decaying exponential, the memory adds only one extra
dimension to the ODE system. We will show in this article
that for each new time scale in the dissipation process we
introduce a new dimension into the dynamical system. To
analyze the importance of memory effects in the dissipation
mechanism we obtain absorption curves for the oscillator,
each one for a different kind of memory function �i.e., sub-
diffusive, diffusive, or superdiffusive memories�.

In this article we will analyze the ac response of our non-
linear Duffing oscillator using the averaging method �AM�,
which is generally used to eliminate explicit time depen-
dence of periodically driven ODE systems. A survey of the
theory of averaging and many other results can be found in
Refs. �1,18�.

In Sec. II we describe the nonlinear bistable response of
Duffing oscillators with simple Markovian dissipation. This
section is included with the objective of describing the back-
ground and setting the stage for the subsequent study of the
non-Markovian oscillator. In Sec. III we introduce the driven
Duffing oscillator with non-Markovian dissipation and corre-
lated noise. We show that when the random force is much
smaller than the external driving force, in general �away
from bifurcation points� the random force can be neglected
from the equations of motion of the oscillator. We investigate
the oscillator in three different dissipation regimes �subdiffu-
sion, diffusion, and superdiffusion� by studying the linear
and nonlinear responses of the Duffing oscillator to either an
initial excitation, such as a � function, or to an ac-driving
force. In Sec. IV we discuss the numerical results. This sec-
tion is divided in two subsections: one for Duffing oscillators
with Markovian dissipation and the other for non-Markovian
dissipation. In the first subsection we map the bistable region
as a function of the driving force amplitude and frequency
and apply the control methods for switching between stable
branches of the bistable response. In the second subsection
we obtain general results on the absorption power for the
non-Markovian oscillator in the three regimes of dissipation
through either �-driven or ac-driven responses. Finally in
Sec. V we draw our conclusions.

II. THE DUFFING OSCILLATOR

In this section we describe the prior art concerning non-
linear bistable response in Duffing oscillators in order to
make the article more readable and self-contained. For fur-
ther details please see Refs. �2,19�.

The forced Duffing equation with Markovian dissipation
in dimensionless format is given by

ẍ + �0
2x = − �ẋ − 	x3 + F0 cos �t , �1�

in which �, 	, and F0�O�
�, where 
�1. Since we want to
apply the AM to situations in which we have detuning it is
convenient to rewrite Eq. �1� in a more appropriate form with
the notation �=�0

2−�2, where we also have ��O�
�. With
the substitution we obtain

ẍ + �2x = − �x − �ẋ − 	x3 + F0 cos �t . �2�

We can rewrite Eq. �2� in the form

ẋ = y, ẏ = − �2x + f�x,y,t� ,

where f�x ,y , t�=−�x+F0 cos �t−�y−	x3. We now set the
above equation in slowly varying form with the Van der Pol
transformation

�x

y
� = � cos �t − sin �t

− � sin �t − � cos �t
��u

v
�

and obtain

�u̇

v̇
� =� cos �t −

1

�
sin �t

− sin �t −
1

�
cos �t	� 0

f�x,y,t� � .

After averaging we find

u̇ =
− 1

2�

�v + ��u +

3	

4
�u2 + v2�v� ,

v̇ =
− 1

2�

− �u + F0 + ��v −

3	

4
�u2 + v2�u� . �3�

The fixed points of the above equation can be found by solv-
ing the following cubic in r2:

r2��� + 3	r2�2 + �2�2� = F0
2/4, �4�

where u=2r cos  and v=2r sin . From the above equations
we find that the necessary conditions for the existence of
three real roots is 	�0 and �2−3�2�2�0, or ����3��
�i.e., ��2−�0

2��3���. The angle  can be found from

sin  = −
2��r

F0
.

The average power absorbed per period of drive by the Duf-
fing oscillator is given by

P̄ = −
�vF0

2
= 2��2r2

=
F0

2��2

2��� + 3	r2�2 + �2�2�

�
F0

2��2

2��� + 3	
F0

2

4��2+�2�2� �2
+ �2�2�

.

Control over the bistability region can be performed by the
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action of designed control pulses with the help of the AM
through Eq. �4�. We notice that we can use pulses in phase or
out of phase with the driving field. The choice will depend
on which branch of the bistable region the oscillator is.
Equation �4� also shows that a driving field with a frequency
modulation can also act as a control switch. In the case of a
driving force given by F�t�=F0 cos��t+� /� cos �t� or F�t�
=F0 cos��t+� /� sin �t�, we could have, for special values
of � and �, a hysteresis loop around the bistable region, in a
manner similar to what is done with ferromagnetic materials.
The looping direction will depend on the value of parameters
of the Duffing oscillator.

III. DUFFING OSCILLATOR WITH MEMORY

The driven Duffing equation with non-Markovian dissipa-
tion and correlated noise is given by the following equation:

ÿ = − �
−�

t

��t − t��ẏ�t��dt� − �0
2y − 	y3 + F�t� + R�t� , �5�

where the nonrandom driving force can be F�t�=K0e−i�t

+K0
�ei�t or F�t�=��t�. Such equations of motion are obtained

when our Duffing oscillator is coupled to a harmonic thermal
reservoir. Here R�t� is a random force, whose time correla-
tion is given by �R�t�R�t���=T��t− t��, where T is the tem-
perature and ��t� is a memory function obtained from inte-
grating out the reservoir degrees of freedom �13�. In what
follows we assume the thermal noise is not very strong and
that we are not close to a bifurcation point. We then perform
a linear analysis of Eq. �5� by taking the noise term as a
perturbation, since we consider R�t��K0. We have y�t�
=x�t�+�y�t�, where x�t� is a stable solution of Eq. �5� when
R�t�=0 and �y�t� is the perturbation response. We then find
the equation for the linear response

�ÿ = − �0
2�y − �

−�

t

dt���t − t���ẏ�t�� − 3	x�t�2�y + R�t� .

�6�

Since this equation is linear we can take a statistical average
and eliminate R�t�. We then obtain an equation for z�t�
= ��y�, where the angles indicate the statistical average. This
averaged equation is

z̈ + ��0
2 + 3	x�t�2�z = − �

−�

t

dt���t − t��ż�t�� . �7�

When F�t� is periodic x�t� is a stable periodic orbit, hence,
we realize that this equation represents a parametrically
driven oscillator with dissipation, only different from the
usual parametric oscillator due to the non-Markovian char-
acter of the dissipation. This parametric oscillator may
present the regions of instability, known as Arnold tongues,
of the generic parametric oscillator given by Hill’s equation
�20�. Consequently, the question of whether the noise will
considerably affect the dynamics of the driven Duffing oscil-
lator depends on the oscillator being inside or outside of the
Arnold tongues. If the oscillator is inside the Arnold tongue
the solution z=0 is unstable and therefore we cannot neglect

the effects of noise. Otherwise, the solution z=0 is stable and
we can neglect the effects of noise, provided we are not close
to a bifurcation point as we assumed initially. The strongest
parametric instability occurs when the driving frequency � is
near the renormalized natural frequency of Eq. �7�, since x�t�
is squared. Once dissipation is present this instability re-
quires a minimum amplitude of the driving force to occur
and this threshold becomes higher and higher for lower and
lower parametric resonances as can be seen in Ref. �20�.
Further below we show numerical results on these zones of
instability. Basically, we find out that noise does not affect
the equations of motion of the Duffing oscillator when the
driving force is not large and the driving frequency is small.
When F�t�=��t�, we find numerically that, for random initial
values of z�0� and ż�0� using the Gibbs probability distribu-
tion or any other symmetric probability distribution, the z�t�
cancel out when summed. Hence, we neglect R�t� in the
dynamics of the Duffing oscillator and obtain

ẍ = − �
−�

t

��t − t��ẋ�t��dt� − �0
2x − 	x3 + F�t� . �8�

A linear analysis of the above equation shows us that the
non-Markovian oscillator has some qualitative differences
from the usual damped oscillator. For instance, when ac
driven, the resonant frequency of the non-Markovian oscil-
lator is generally shifted from �0 while the usual oscillator
always has the resonant frequency given by �0. When the
non-Markovian oscillator is driven by an impulsive force, the
frequency of the decaying transient oscillations can be blue
shifted in comparison with �0, while for the usual damped
oscillator the oscillations are always redshifted. The solution
of the above equation when 	=0 and the drive is F�t�
=��t� is given by

x�t� =
1

2�
�

−�

� e−i�td�

� − i��̃�i��
, �9�

where �̃�i�� is the Laplace transform of the memory func-
tion. When 	�0 we have

x� = x�
0 −

	

�2��2x�
0�

−�

�

x�t�3e−i�tdt

= x�
0 −

	

�2��2x�
0�

−�

�

d�1x�1�
−�

�

d�2x�2
x�−�1−�2

, �10�

where

x�
0 =

1

� − i��̃�i��
.

The simple fact that the Fourier transform of x�t� is related to
the memory function could be used to verify experimentally
to what extent the dynamics of the NEMS is non-Markovian.
Furthermore, with this information, one could, in principle,
accurately measure the memory function. A determination of
the memory function will tell us what kind of random motion
the free Brownian particle will have: subdiffusive, diffusive,
or superdiffusive �12�. Although nanoscale displacement de-
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tection in NEMS is a highly challenging task, it has been
recently accomplished by Almog et al. �11� and also by Peng
et al. �14�. Another approach to determine the memory func-
tion is through the measurement of the amplitude and phase
of the steady-state response x�t�=a cos��t+�� for a fre-
quency range around the resonance of the non-Markovian
Duffing oscillator to an ac driving force.

At steady state we look for a solution of the form x�t�
=x�e−i�t+x�

� ei�t, which is the first term of a perturbation se-
ries expansion of the true periodic solution. With this substi-
tution in Eq. �8� we find

�� − i��̃�i�� + 3	�x��2�x� = K0. �11�

We simplify the above equation with the shorthand notation

r2= �x��2 and z���=�− i��̃�i��. Hence we obtain

�z��� + 3	r2�r2 = K0x�
� ,

which can be simplified to

�z��� + 3	r2�r = �K0� . �12�

The above development was a simple application of straight-
forward perturbation expansion. In the following we proceed
to investigate the Duffing equation with memory using the
AM, which allows us to study the stability of periodic orbits.
In the slowly varying frame we have

�u̇

v̇
� =�− cos �t

1

�
sin �t

sin �t
1

�
cos �t	� 0

− f�x,y,t� �
=

− 1

�
� sin �tf�x,y,t�

cos �tf�x,y,t� � ,

where now f�x ,y , t�=−�−�
t ��t− t��y�t��dt�−	x3+K0e−i�t

+K0
�ei�t. After averaging we obtain

u̇ = −
1

2�
��v + ��u Re �̃�i�� − v Im �̃�i���

+
3	

4
�u2 + v2�v + 2 Im K0� ,

v̇ = −
1

2�
�− �u + ��u Im �̃�i�� + v Re �̃�i���

−
3	

4
�u2 + v2�u + 2 Re K0� . �13�

The average power absorbed by this viscoelastic nonlinear
oscillator is given by

P̄��� = − ��K0�v̄ − iū� + c.c.�/2

=
2�K0�2�2 Re �̃�i��

�z��� + 3	r2�2
�

2�K0�2�2 Re �̃�i��

�z��� + 3	
�K0�2

�z����2 �
2 , �14�

where ū and v̄, are the fixed points of Eq. �13�.

We will next analyze the three different regimes of non-
Markovian dissipation: diffusive, subdiffusive, and superdif-
fusive. In what follows, we choose for each dissipative
mechanism a representative memory function. Each dissipa-
tive regime will have its own universal response �power law
in the absorption function� in the limit the driving frequency
�→0. In principle this limit could be probed with an oscil-
lator with small elastic constant.

A. Diffusive memory

In general, it is difficult to numerically integrate Eq. �8�
for a generic memory function, but in the special case the
memory is an exponential function ��t�=�0e−t/�, there is a
simple method in which the integrodifferential Eq. �8� be-
comes an ODE system of dimension 3. By setting z�t�
=�−�

t ��t− t��ẋ�t��dt�, we find the ODE system

ẍ = − z − �0
2x − 	x3 + F�t�, ż = �0ẋ − z/� , �15�

which was numerically integrated with the initial values
given by x�0�=z�0�=0 and ẋ�0�=0 when F�t�=K0e−i�t

+K0
�ei�t, or x�0�=z�0�=0 and ẋ�0�=1 when F�t�=��t�. The

main advantage of this transformation from an integrodiffer-
ential equation into an ODE system is that we can use off-
the-shelf integration algorithms such as the Runge-Kutta al-
gorithm to integrate the ODE system, what cannot be done in
general for the integrodifferential equation in Eq. �8�. The
Laplace transform of the exponential memory is given by

�̃�i��=�0�1 /�+ i�� / �1 /�2+�2�. This memory function al-
ways leads to diffusive processes for a free Brownian par-

ticle since �0��̃�0���� �12�. It also implies in the blue-
shifted resonant frequency obtained from the continued
fraction expansion of

�R
2 =

�0
2

1 −
�0

1/�2+�R
2

,

which can be rewritten as

�R
2 = �0

2 +
�0

1 + 1/���R�2 �16�

for clarity. Note that if we had two time scales in the dissi-
pation process, e.g., ��t�=�0e−t/�0 +�1e−t/�1 we would have
two more dimensions in the ODE system than in the Mar-
kovian oscillator. In general, a memory function can be writ-
ten as ��t�=�i�ie

−t/�i, in which the more terms in the sum-
mation �leading in the continuous limit to a Laplace
transform� the more dimensions in the ODE system. Imply-
ing also in more extensive changes in the dynamics of the
oscillator under study. The average power absorbed in diffu-
sive dissipation near �=0 is given by lim�→0 P�����2.
This is a universal power law for oscillators with diffusive
memory. This result is independent of the specific memory
function used or of nonlinear effects according to Eq. �14�.

B. Subdiffusive memory

We choose the representative memory ��t�=
�0
t

of subdif-

fusive processes ��̃�0�→�� from Ref. �12�. It has the
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Laplace transform �̃�i��=�0
 �

2��� �1+ i sgn����. We also find
that subdiffusivity also implies in a blueshift of the resonant
frequency. The equation for the resonant frequency �R in the
linear regime is given by

�R
2 = �0

2 + �0
��R/2. �17�

The average power absorbed near �=0 is given by
lim�→0 P�����3/2. Although, the exact exponent of the ab-
sorption may vary for different subdiffusive processes, this
exponent has to be less than 2 for all subdiffusive processes

�assuming lim�→0 �̃�i����−�, where ��0�.

C. Superdiffusive memory

We choose the representative memory function for super-

diffusive processes ��̃�0�→0� to be ��t�=�0e−t/�0 −�1e−t/�1,
in such a way that �0�0=�1�1. It has the following Laplace
transform:

�̃�i�� = �0
1/�0 + i�

1/�0
2 + �2 − �1

1/�1 + i�

1/�1
2 + �2 ,

where we choose �0��1 and �0��1. The resonant fre-
quency in the linear regime is given implicitly by

�R
2
1 −

�0

1/�0
2 + �2 +

�1

1/�1
2 + �2� = �0

2. �18�

The advantage of this superdiffusive memory over others is
that it allows for easy numerical integration of the equations
of motion �8� of the Duffing oscillator. The average power
absorbed near �=0 is given by lim�→0 P�����4. In general
the exponent of the absorption for superdiffusive processes
goes as �� for �→0, where ��2.

IV. NUMERICAL RESULTS

We now characterize the bistable regime of the Duffing
oscillators and present the response of these oscillators to
appropriately designed pulses that act as a switch between
the stable branches of this bistable regime. The equations of
motion were integrated using the fourth-order Runge-Kutta
algorithm with 2048 steps per cycle of drive. Furthermore,
we investigate the effects of the three different kinds of non-
Markovian dissipation on the response of the oscillator to
either a �-function excitation or to an ac drive at steady state.
In the case of an exponentially decaying memory �diffusive
process� we can easily integrate the equations of motion both
for the linear and nonlinear regimes. On the other hand, we
only study the linear responses when the memory is subdif-
fusive or superdiffusive due difficulties in integrating nonlin-
ear integrodifferential equations.

A. Markovian dissipation

In the bistable region of the ac-driven Duffing oscillator
we have three periodic orbits, from which two are stable,
with the unstable orbit in between the two stable ones. The
smaller orbit, on average, absorbs less energy from the driv-
ing field than the larger one. This is due to one branch being

nearly in phase with the driving field, while the other nearly
out of phase. The time series of ẋ�t� corresponding to the two
stable branches of the bistable region are shown in Fig. 1, in
frames �a� and �c�, alongside with the corresponding Fourier
transforms in frames �b� and �d�. One can see in the figure a
difference in amplitude of the third harmonic between the
two responses around two orders of magnitude. That differ-
ence could in principle be used for designing microwave
modulators where the source of radiation is a charged vibrat-
ing MEMS or NEMS. In one of the branches we would have
a high signal at the third harmonic, the on state, or bit 1,
while at the other branch we would have a small signal that
could represent the off state, or bit 0.

A hysteretic loop of the absorption line as a function of
the drive amplitude is shown in Fig. 2. We plot together the
results from numerical integration of Eq. �1� and also from
the AM of Eq. �4�. We note that the accuracy of the AM is

dx
/d

t(
t)

t

c)

dx
/d

t(
t)

a)

0

-2

-4

-6
97531

frequency (in units of ω)

d)

0

-2

-4

-6

b)

FIG. 1. Example of two stable responses of the Duffing oscilla-
tor at bistability with the corresponding Fourier transforms. The
parameters are given by �0=1.0, �=1.43, 	=1.0, �=0.2, and F0

=0.40.
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FIG. 2. Hysteresis region. Only the stable branches are shown in
the numerical absorption curve, while the AM theoretical curve
shows all three branches. The parameters are given by �0=1.0, �
=1.43, 	=1.0, and �=0.2.
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better for smaller amplitudes of the driving force, which is in
accordance to what we expected since this is a perturbative
method. In this case one could also observe bistability by
varying the drive frequency if the amplitude of the driving
force is in the interval between 0.3 and 0.5. One can see this
in Fig. 3, where we show the bistability region of the Duffing
oscillator given as a function of driving frequency and driv-
ing field amplitude. These results are based on the AM re-
sults of Eq. �4�. One needs considerable blueshifted detuning
to start seeing the bistability response. We verify the global
extension of the applicability of the AM by comparing the
results of Fig. 3�a� with those of Fig. 3�b�, which displays the
bistability region of the Duffing oscillator obtained from the
numerical integration of Eq. �1�. We obtain a fairly good
agreement with the previous result given by AM calcula-
tions, indicating that the AM is a very good predictor of the
bistable behavior of Duffing oscillators.

These results showing the bistable response will serve us
as a guide for constructing the control switch between the
stable modes. The AM calculation tells us what is the neces-
sary minimum amplitude for the pulse in order to realize the
switch. If the system is initially in the smaller orbit we then
need an in-phase pulse to reach the jump point and then the
other branch, and vice versa, if we are in the larger orbit we
need an out-of-phase pulse. At the jump points we have an
abrupt change both in the amplitude and in the phase of the
oscillation. Although the pulse is adiabatic the transition at
the jump points will be abrupt, hence the need for the peak
field of the pulse be large enough to take the Duffing oscil-
lator out of the bistable region in order to accomplish the
transition with certainty.

We can see the effects of a control pulse acting on the
driven Duffing oscillator in Fig. 4. In this figure we present

the time evolution of x�t�, where the time evolution is given
through the full numerical integration �the oscillating line�,
the Poincaré map �triangles�, and its approximation by the
AM calculation �dotted line�. Here the pulse is out of phase
with respect to the driving force, hence from looking at Fig.
2 we conclude that the oscillator is initially in the lower
branch and, as the pulse amplitude grows, we nearly adia-
batically go down along the lower branch until the jump
point is reached. At this moment we swing to the other
branch and stay there. After the jump, the high odds of stay-
ing in the smaller branch are due to the pulse being fairly
wide in time �as the oscillator jumps to the other branch the
total field is still decreasing and only after it settles there the
pulse field envelope starts to decrease�. This fact can be seen
more clearly in Fig. 5. There we show the Poincaré map
phase diagram of the fully numerical time evolution
�–+ –line� of the switching between the two stable modes.
The other lines in this figure represent the results obtained
from the AM calculations. We notice that as the pulses get
longer there is a convergence toward the adiabatic result.

The switching between the stable branches of the bistabil-
ity region of the Duffing oscillator can also alternatively be
controlled with a frequency-modulated force as can be seen
in Figs. 6 and 7. In those figures the underlying small and
large stable orbits are still clearly noticed.

B. Non-Markovian dissipation

In Fig. 8 we show that noise in the Duffing equation with
memory is only relevant inside the instability zones of Eq.
�7�. In particular the approximation taken in Eq. �8� is con-
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from integrating the corresponding averaged system of equations.
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trol pulse is 0.127, the width is 17.6, and the median is at t=1248.
The parameters of the oscillator are �0=1.0, �=1.43, 	=1.0, �
=0.2, and F0=0.40.
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sistent on average when the oscillator parameters are set out-
side of the instability zones. That approximation is usually
good when the driving force is not large and the driving
frequency is away from the strongest parametric resonance
of Eq. �7�.

We can see some fundamental differences between the
usual linear damped oscillator and the non-Markovian
damped oscillator in Fig. 9. In this figure we depict the re-
sponse of five kinds of oscillators: nondissipative, Markov-
ian, and non-Markovian �diffusive, subdiffusive, and super-
diffusive� after an initial �-function excitation. There is no
external ac field applied here. In the Markovian case the
frequency of the transient response is always smaller that the
natural frequency �0 of the oscillator. We notice that the
frequency of the transient responses of the three different
non-Markovian dissipation regimes can be larger than �0.
This is more markedly seen in the diffusive and subdiffusive
responses as expected from Eqs. �16� and �17�. This shift in
the resonant frequency occurs due to a change in the effec-

tive mass of the oscillator and also on the restoring force of
the oscillations due to the response of the fluid around the
oscillator contained in the memory function. The parameters
of the oscillators are indicated in the figure. The differences
between the transient results of Fig. 10, in which the natural
frequency is �0

2=0.5, are more pronounced than in Fig. 9, in
which �0

2=1.0. This occurs because the closer �0 becomes to
zero, bringing along also the resonant frequency �R, the
more relevant the differences in response between the dissi-

pation regimes become �since in diffusion 0��̃�i����, in

subdiffusion �̃�i��→�, and in superdiffusion �̃�i��→0 as
�→0�. This information could lead to simple transient-
oscillation experiments with NEMS to test whether they are
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in the non-Markovian regime or not. In these experiments
noise could be eliminated by adding up the results of many
successive measurements.

Linear absorption line curves of the three dissipative pro-
cesses are shown in Figs. 11 and 12. We choose different
values of �0 for each regime in such a way that their absorp-
tion peak values are approximately the same when �0

2=1.0.
Hence, the corresponding responses will be as close as pos-
sible for the same excitation. In Fig. 12 we see that these
responses become markedly different because the memory
functions are very distinct near �=0. In this figure we have a

log-log plot of the absorption lines for the three regimes of
non-Markovian dissipation. The power law behavior is
clearly seen in the slope of the absorption lines in the log-log
plot. By measuring the slopes we obtain the power laws
P������, where ��2 for subdiffusion, �=2 for diffusion,
and �=4 for superdifusion.

Absorption line curves with hysteresis for the Duffing os-
cillator with diffusive memory are presented in Fig. 13.
These results are obtained from the full numerical integration
of Eq. �15�. The parameters used are 	=1.0 and �=1.43. A
range of values for �0 and � are used in such a way that
�0�=0.2. We then use shorter and shorter values of �. In the
limit �→0 we obtain the corresponding response of the usual
Duffing oscillator without memory as expected. We show a
comparison of numerical and analytical absorption-line
curves with hysteresis for the Duffing oscillator with
memory in Fig. 14. Only the stable branches are shown in
the numerical absorption curve, while the AM theoretical
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curve shows all three branches. The parameters are given by
	=1.0, �0=0.4, �=0.5, and �=1.43. These results are in-
cluded here only as consistency checks, first verifying that
the Markovian limit is obtained once shorter and shorter cor-
relation times are taken for the memory function and second
that AM works well for the integrodifferential equations of
motion of the non-Markovian oscillator. The extension of the
bistable region is something that could be readily measured
experimentally, what could serve as another test for the
model provided the amount of noise is small. With the pres-
ence of noise we expect that these bistable regions shrink in
a similar way as that observed by Aldridge and Cleland �8�.

V. CONCLUSIONS AND OUTLOOK

We have shown that bistability can be controlled in Duf-
fing oscillators by in-phase or out-of-phase force-amplitude
pulses, or by frequency-modulated driving. In the case of
control via force-amplitude pulses, the envelope should vary
adiabatically so that the control method is efficient and the
AM �which is equivalent to the slowly varying envelope ap-
proximation� is applicable. The necessary peak fields for ef-
fectively controlling the stable responses were obtained from
AM calculations. We performed this control approach in the
ac-driven Duffing oscillator with Markovian dissipation. In
the case of control via frequency modulation, we found that
if the frequency varies adiabatically and its amplitude is
large enough we can easily switch around the hysteretic loop.

We also investigated the role of non-Markovian dissipa-
tion processes over the linear and nonlinear responses of the
Duffing oscillator to ac and �-function excitations. We found
both qualitative as well as quantitative differences in the re-
sponses of the non-Markovian oscillator as compared with
the equivalent responses of the usual Markovian oscillator to
the same excitation. The frequency of the transient response
to a �− function kick can be blueshifted with respect to the
natural frequency, as opposed to the usual damped oscillator
response, when it is always redshifted; a fact that could be
explored in a simple experiment with NEMS to verify
whether the oscillator is in the non-Markovian regime or not.
Further information about the memory function could be ob-
tained from the Fourier transform of the time evolution of

x�t�. In fact, accurate measurement of �̃�i�� could be ob-
tained from linear response to either a �-function kick, based
on Eq. �9�, or to steady-state ac driving, based on Eq. �11�.
For the ac-driven oscillator the amplitude and phase of the
oscillations should be known for each driving frequency �or
at least around resonance� for the memory function to be
accurately determined from Eq. �11� except for intrinsic ran-
dom noise deviations, which could be minimized by sum-
ming up the results of repeated experiments. Hence, one re-
alizes that the sampling of the linear response x�t� to a � kick
would give all the information necessary to find the memory
��t� in a single experiment instead of the required sweep in
the driving frequency for the ac-driven oscillator. We have
investigated three different types of memory function, one
for each type of Brownian motion: diffusive, subdiffusive,
and superdiffusive. We found that each new time scale intro-
duced in the dissipative process will create a new dimension
in the dynamical system. We found further that in diffusive
dissipation the average power absorbed near �=0 is given by
lim�→0 P�����2. This is a universal power law for oscilla-
tors with diffusive memory. We found that in subdiffusive
dissipation the average power absorbed near �=0 is ��3/2.
Although, the exact exponent of the absorption may vary for
different subdiffusive processes, this exponent has to be less
than 2 for all subdiffusive processes. For superdiffusive dis-
sipation the average power absorbed near �=0 is given by
lim�→0 P�����4. In general the exponent of the absorption
for superdiffusive processes goes as �� for �→0, where �
�2. All these results are independent of nonlinear effects
according to Eq. �14�.
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This study may be helpful in guiding future developments
in NEMS science and technology. The control mechanisms
proposed here can be applied to controlling bistability in
NEMS, such as eliminating phase shifts generated by noise-
induced jumps between the stable branches. Another possible
technological application of the oscillating NEMS is related
to the generation of microwave radiation through third-
harmonic generation. In this case, the switching between the
two stable responses can lead to any sequence of high and
low third-harmonic generation, what could be used as a mi-
crowave modulator. Furthermore, the control mechanisms
proposed here could be readily applied to other systems that

present bistability such as intersubband transitions in quan-
tum wells �21� and microcavities with optomechanical insta-
bilities �22,23�. As the size of NEMS become smaller with
increasingly higher fundamental-mode frequencies, memory
effects will play an important role in the dynamics. This will
be of paramount importance when NEMS are immersed in a
fluid, since the fluid response changes significantly from low
to high frequencies �when the fluid becomes viscoelastic�.
Finally, some fundamental theories about the role of memory
in diffusion processes in fluids �12� could be tested by the
proposed method of measurement of the memory function
that could lead to a better understanding of Brownian
motion.
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